

3.5. Buffer solutions

A buffer solution is a solution that resists a change in pH when a small quantity of acid or base is added.

1. (a) A buffer solution is made by mixing 0.510 mol of methanoic acid with 0.450 mol of sodium

		methanoate in 500 cm ³ of water.		
		(i)	Write an equation to represent the equilibrium established in the buffer solution.	
		(ii)	Calculate the pH of the buffer solution formed. (p K_a for methanoic acid = 3.75)	
	(b)	Exp	lain how this buffer resists change in pH on;	
		(i)	addition of a small quantity of acid.	
			(1 mark)	
		(ii)	addition of a small quantity of base.	
			(1 mark)	
2.	bod	y. Th	d Karen are carrying out a science project on the application of buffer solutions in the human sey have discovered that a buffer of carbonic acid (H_2CO_3) and hydrogen carbonate (HCO_3^-) is n blood plasma to maintain a pH of between 7.35 and 7.45.	
	(a)	they	y would like to recreate a similar buffer solution in the laboratory. In what proportions should v mix 0.150 mol dm ⁻³ solutions of carbonic acid and sodium hydrogen carbonate to give a buffer ation with a pH of 7.40? (K_a for H ₂ CO ₃ is 4.5×10^{-7} mol dm ⁻³).	
			(2 marks)	
	(b)	Wh	y do you think buffer solutions are needed in the human body?	
			(2 marks)	

3. Acids and bases answers

3.5. Buffer solutions

- 1. (a) (i) $HCOOH(aq) \rightleftharpoons HCOO^{-}(aq) + H^{+}(aq)$ (1 mark)
 - (ii) $pK_a = -\log K_a$, $\therefore K_a = 10^{-3.75} = 1.78 \times 10^{-4} \text{ mol dm}^{-3}$ (1 mark)

 $K_a = [HCOO^{-}(aq)][H^{+}(aq)]$ [HCOOH(aq)]

 $[HCOO^{-}(aq)] = 0.450 \text{ mol } / 0.5 \text{ dm}^{3} = 0.90 \text{ mol dm}^{-3}$

 $[HCOOH(aq)] = 0.510 \text{ mol } / 0.5 \text{ dm}^3 = 1.02 \text{ mol dm}^{-3}$

Substituting these values in we get, 1.78×10^{-4} mol dm⁻³ = $0.90 \times [H^{+}(aq)] / 1.02$

∴ $[H^{+}(aq)] = 2.02 \times 10^{-4} \text{ mol dm}^{-3}$

 $\therefore pH = 3.70 \tag{1 mark}$

- (b) (i) On the addition of H⁺ ions, according to Le Châtelier's principle, the equilibrium shifts to the left to remove the extra H⁺ ions added and maintain the pH approximately constant. (1 mark)
 - (ii) On the addition of OH⁻ ions, the OH⁻ ions react with the HCOOH to produce water molecules and more HCOO⁻;

HCOOH + OH⁻ → HCOO⁻ + H₂O

This removes the OH⁻ and so the pH remains approximately constant. (1 mark)

2. (a) $H_2CO_3(aq) \rightleftharpoons HCO_3^-(aq) + H^+(aq)$

pH of desired buffer = 7.40, so $[H^{+}(aq)] = 10^{-7.40} = 3.98 \times 10^{-8} \text{ mol dm}^{-3}$ (1 mark)

 $K_a = [HCO_3^-(aq)][H^+(aq)]$

[H₂CO₃(aq)]

 $\therefore [HCO_3^{-}(aq)] = K_a = \frac{4.5 \times 10^{-7} \text{ mol dm}^{-3}}{3.98 \times 10^{-8} \text{ mol dm}^{-3}} = \frac{11.3}{1}$ (1 mark)

Since both stock solutions are of an equal concentration they should mix the two in a ratio of $\underline{11.3:1\ HCO_3^-:H_2CO_3}$

(b) Many reactions in the human body rely on <u>enzymes</u>. Enzymes work only under very precise conditions. If the pH moves outside of a narrow range, the <u>enzymes slow or stop working and can</u> <u>be denatured</u>. Hence maintaining a constant pH is essential. (2 marks)

3.6. More complex buffer calculations

1. $CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COO^-Na^+ + H_2O$

Moles of NaOH = $0.015 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3} = 1.5 \times 10^{-3} \text{ mol}$

(1 mark)

(1 mark)

 \therefore moles of CH₃CH₂COOH will decrease by 1.5 \times 10⁻³ mol and moles of CH₃CH₂COO⁻Na⁺ will increase by 1.5 \times 10⁻³ mol. (1 mark)

